Karl Weierstrass
Karl Theodor Wilhelm Weierstrass (bil-Ġermaniż: Weierstraß [ˈvaɪɐʃtʁaːs][1]; twieled fil-31 ta' Ottubru 1815 – miet fid-19 ta' Frar 1897) kien matematiku li sikwit jissejjaħ "missier l-analiżi moderna". Minkejja li telaq mill-università mingħajr lawrja, studja l-matematika u tħarreġ bħala għalliem tal-iskola, u eventwalment għallem il-matematika, il-fiżika, il-botanika u l-ġinnastika.[2] Iktar 'il quddiem ingħata dottorat onorarju u sar professur tal-matematika f'Berlin, il-Ġermanja.
Fost bosta kontributi oħra, Weierstrass ifformalizza d-definizzjoni tal-kontinwità ta' funzjoni, wera bil-provi t-teorema tal-valur intermedju u t-teorema ta' Bolzano-Weierstrass, u uża din it-teorema tal-aħħar biex jistudja l-proprjetajiet tal-funzjonijiet kontinwi f'intervalli limitati magħluqa.
Bijografija
immodifikaWeierstrass twieled f'Ostenfelde, parti minn Ennigerloh, fil-Provinċja ta' Westfalen.[3]
Weierstrass kien bin Wilhelm Weierstrass, uffiċjal tal-gvern, u Theodora Vonderforst. L-interess tiegħu fil-matematika beda meta kien student tal-liċeo fit-Theodorianum f'Paderborn. Huwa ntbagħat fl-Università ta' Bonn malli temm l-istudji sekondarji sabiet jipprepara għal kariga mal-gvern. Minħabba li l-istudji tiegħu kellhom ikunu fl-oqsma tad-dritt, l-ekonomija u l-finanzi, mill-ewwel ma kinux jaqblu mat-tama tiegħu li jistudja l-matematika. Huwa solva l-kunflitt billi ma tax wisq attenzjoni għall-kors ta' studju ppjanat u minflok issokta l-istudju privat fil-matematika. L-eżitu kien li telaq mill-università mingħajr lawrija. Imbagħad huwa studja l-matematika fl-Akkademja ta' Münster (li anke dak iż-żmien kienet famuża għall-matematika) u missieru rnexxielu jiksiblu post fi skola tat-taħriġ għall-għalliema f'Münster. Iktar 'il quddiem huwa ġie ċċertifikat bħala għalliem f'dik il-belt. Matul dan il-perjodu ta' studju, Weierstrass attenda l-lekċers ta' Christoph Gudermann u sar interessat fil-funzjonijiet ellittiċi.
Fl-1843 huwa għallem fid-Deutsch Krone fil-Punent tal-Prussja u mill-1848 huwa għallem fil-Liċeo Hosianum f'Braunsberg. Minbarra l-matematika, huwa għallem ukoll il-fiżika, il-botanija u l-ġinnastika.[3]
Weierstrass jaf kellu wild illeġittimu msejjaħ Franz mal-armla ta' sieħbu Carl Wilhelm Borchardt.[4]
Wara l-1850, Weierstrass għadda minn perjodu twil ta' mard, iżda xorta rnexxielu jippubblika artikoli matematiċi li kisbulu l-fama u r-rikonoxximent. L-Università ta' Königsberg tagħtu dottorat onorarju fil-31 ta' Marzu 1854. Fl-1856 issieħeb fil-Gewerbeinstitut f'Berlin (istitut tal-edukazzjoni tal-ħaddiema tekniċi li iktar 'il quddiem ingħaqad mal-Bauakademie biex jifforma l-Università Teknika ta' Berlin). Fl-1864 huwa sar professur fil-Friedrich-Wilhelms-Universität Berlin, li mbagħad saret il-Humboldt Universität ta' Berlin.
Fl-1870, meta kellu ħamsa u ħamsin sena, Weierstrass iltaqa' ma' Sofia Kovalevsky li għallimha privatament wara li ggarantielha li tidħol fl-università. Kellhom relazzjoni personali li "kienet tmur lil hinn minn sempliċi relazzjoni bejn għalliem u student". Il-misinterpretazzjoni ta' din ir-relazzjoni u l-mewt bikrija ta' Kovalevsky fl-1891 jingħad li kkontribwew biex Weierstrass iktar 'il quddiem marad. Huwa kien immobbli għall-aħħar tliet snin ta' ħajtu, u miet f'Berlin bil-polmonite.[5]
Kontributi matematiċi
immodifikaValidità tal-kalkolu
immodifikaWeierstrass kien interessat fil-validitá tal-kalkolu, u dak iż-żmien kien hemm definizzjonijiet kemxejn ambigwi tal-pedamenti tal-kalkolu tant li teoremi importanti ma setgħux jiġu kkonfermati bi provi rigorużi biżżejjed. Għalkemm fl-1817 Bolzano kien diġà żviluppa definizzjoni raġonevolment rigoruża ta' limitu (u jista' jkun anke qabel), ix-xogħol tiegħu kien għadu mhux magħruf mill-biċċa l-kbira tal-komunità matematika sa snin wara, u bosta matematiċi kellhom biss definizzjonijiet vagi tal-limiti u tal-kontinwità tal-funzjonijiet.
L-idea bażika tal-provi tad-Delta-epsilon x'aktarx li dehret għall-ewwel darba fix-xogħlijiet ta' Cauchy fis-snin 20 tas-seklu 19.[6][7] Cauchy ma għamilx distinzjoni ċara bejn il-kontinwità u l-kontinwità uniformi f'intervall. Notevolment, fil-Cours d'analyse tiegħu tal-1821, Cauchy argumenta li l-limitu (punt b'punt) tal-funzjonijiet kontinwi (punt b'punt) kien fih innifsu kontinwu (punt b'punt); dikjarazzjoni li inġenerali hija falza. Id-dikjarazzjoni korretta hija pjuttost li l-limitu uniformi tal-funzjonijiet kontinwi huwa kontinwu (kif ukoll li l-limitu uniformi tal-funzjonijiet kontinwi b'mod uniformi huwa kontinwu b'mod uniformi). Dan kien jeħtieġ il-kunċett tal-konverġenza uniformi, li ġie osservat mill-konsulent ta' Weierstrass, Christoph Gudermann, f'dokument tal-1838, fejn Gudermann innota l-fenomenu iżda ma ħariġx b'definizzjoni jew elabora fuqu. Weierstrass induna bl-importanza tal-kunċett, u t-tnejn li huma fformalizzawh u applikawh b'mod wiesa' fil-pedamenti tal-kalkolu.
Id-definizzjoni formali tal-kontinwità ta' funzjoni, kif ifformulata minn Weierstrass, hija:
hija kontinwa f' jekk b'mod li għal kull fid-dominju ta' , Għaldaqstant, huwa kontinwu fil-punt jekk għal kull qrib biżżejjed ta' , il-valur tal-funzjoni ikun qrib ħafna ta' , fejn ir-restrizzjoni ta' "qrib ħafna" tipikament tiddependi fuq il-qrubija mixtieqa ta' minn Permezz ta' din id-definizzjoni, huwa wera bil-provi t-Teorema tal-Valur Intermedju. Huwa wera bil-provi wkoll it-teorema ta' Bolzano-Weierstrass u użaha biex jistudja l-proprjetajiet tal-funzjonijiet kontinwi f'intervalli magħluqin u limitati.
Weierstrass kiseb avvanzi wkoll fil-qasam tal-kalkolu tal-varjazzjonijiet. Billi uża l-apparat tal-analiżi li kien għen biex jiġi żviluppat, Weierstrass seta' jagħti riformulazzjoni kompluta tat-teorija li wittiet it-triq għall-istudju modern tal-kalkolu tal-varjazzjonijiet. Fost diversi assjomi, Weierstrass stabbilixxa kundizzjoni neċessarja għall-eżistenza ta' estremi qawwija tal-problemi varjazzjonali. Huwa għen ukoll biex tiġi stabbilita l-kundizzjoni ta' Weierstrass-Erdmann, li tagħti biżżejjed kundizzjonijiet biex estremal ikollu kantuniera tul estrem partikolari u tippermetti li wieħed isib kurva minimizzanti għal integrali partikolari.
Teoremi analitiċi oħra
immodifika- Teorema ta' Stone-Weierstrass
- Teorema ta' Casorati-Weierstrass-Sokhotski
- Funzjonijiet ellittiċi ta' Weierstrass
- Funzjoni ta' Weierstrass
- M-test ta' Weierstrass
- Teorema tal-preparazzjoni ta' Weierstrass
- Teorema ta' Lindemann-Weierstrass
- Teorema tal-fatturizzazzjoni ta' Weierstrass
- Parametrizzazzjoni ta' Enneper-Weierstrass
Studenti
immodifika- Edmund Husserl
- Sofia Kovalevskaya
- Gösta Mittag-Leffler
- Hermann Schwarz
- Carl Johannes Thomae
- Georg Cantor
Unuri u premjijiet
immodifikaIl-krater lunari ta' Weierstrass u l-asterojde 14100 Weierstrass issemmew għalih. Barra minn hekk, hemm ukoll l-Istitut ta' Weierstrass għall-Analiżi Applikata u għall-Istokastika f'Berlin.
Selezzjoni ta' xogħlijiet
immodifika- Zur Theorie der Abelschen Funktionen (1854)
- Theorie der Abelschen Funktionen (1856)
- Abhandlungen-1, Math. Werke. Bd. 1. Berlin, 1894
- Abhandlungen-2, Math. Werke. Bd. 2. Berlin, 1895
- Abhandlungen-3, Math. Werke. Bd. 3. Berlin, 1903
- Vorl. ueber die Theorie der Abelschen Transcendenten, Math. Werke. Bd. 4. Berlin, 1902
- Vorl. ueber Variationsrechnung, Math. Werke. Bd. 7. Leipzig, 1927
Referenzi
immodifika- ^ Duden. Das Aussprachewörterbuch. 7. Auflage. Bibliographisches Institut, Berlin 2015, ISBN 978-3-411-04067-4.
- ^ Weierstrass, Karl Theodor Wilhelm. (2018). In Helicon (Ed.), The Hutchinson unabridged encyclopedia with atlas and weather guide. Abington: Helicon.
- ^ a b "Karl Weierstrass - Biography". Maths History (bl-Ingliż). Miġbur 2021-11-01.
- ^ Biermann, Kurt-R.; Schubring, Gert (1996). "Einige Nachträge zur Biographie von Karl Weierstraß. (German) [Some postscripts to the biography of Karl Weierstrass]". History of mathematics. San Diego, CA: Academic Press. pp. 65–91.
- ^ Dictionary of scientific biography. Gillispie, Charles Coulston,, American Council of Learned Societies. New York. p. 223. ISBN 978-0-684-12926-6.
- ^ Grabiner, Judith V. (March 1983), "Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus", The American Mathematical Monthly, 90 (3): 185–194.
- ^ Cauchy, Augustin-Louis (1789-1857) Auteur du texte (1882–1974). Oeuvres complètes d'Augustin Cauchy. Série 2, tome 4 / publiées sous la direction scientifique de l'Académie des sciences et sous les auspices de M. le ministre de l'Instruction publique... (bil-Franċiż).Manutenzjoni CS1: format tad-data (link)